Category Archives: Attention


Why do almost all people tell the truth in ordinary everyday
life? […] The reason is, firstly because it is easier; for
lying demands invention, dissimulation, and a good memory
(Friedrich Nietzsche, page 54, Human, All Too Human:  A Book for Free Spirits, 1878)

“I just fired the head of the F.B.I. He was crazy, a real nut job,” Mr. Trump said, according to the document, which was read to The New York Times by an American official. “I faced great pressure because of Russia. That’s taken off.”

Mr. Trump added, “I’m not under investigation.”  (Pres. Donald Trump, discussion with Russian diplomats, May 10, 2017).

This post is based on the paper:  ” ‘ I can see it in your eyes’: Biased Processing and Increased Arousal in Dishonest Responses,” authored by Guy Hochman, Andreas Glockner, Susan Fiedler, and Shahar Ayal, that appeared in the  Journal of Behavioral Decision Making, December 2015.

Continue reading

Are There Levels of Consciousness?

Global Workspace Theory - tutorialThis post examines the paper: “Are There Levels of Consciousness?” written by
Tim Bayne,  Jakob Hohwy, and Adrian M. Owen,  that appeared in Trends in Cognitive Sciences, June 2016, Vol. 20, No. 6. The paper is described as opinion and for me bridges ideas of predictive processing with some of the ideas of Stanislas Dehaene.  Jakob Hohwy is an important describer of predictive processing. The paper argues that the levels-based or continuum based framework for conceptualizing global states of consciousness is untenable and develops in its place a multidimensional account of global states.

Consciousness is typically taken to have two aspects: local states  and global states. Local states of consciousness include perceptual experiences of various kinds, imagery experiences, bodily sensations, affective experiences, and occurrent thoughts. In the science of consciousness local states are usually referred to as ‘conscious contents. By contrast, global states of consciousness are not typically distinguished from each other on the basis of the objects or features that are represented in experience. Instead, they are typically distinguished from each other on cognitive, behavioral, and physiological grounds. For example, the global state associated with alert wakefulness is distinguished from the global states that are associated with post-comatose conditions.

The authors suggest that to describe global states as levels of consciousness is to imply that consciousness comes in degrees, and that changes in a creature’s global state of consciousness can be represented as changes along a single dimension of analysis. Bayne, Hohwy, and Owen see two problems with this.  One person can be conscious of more objects and properties than another person, but to be conscious of more is not to be more conscious. A sighted person might be conscious of more than someone who is blind, but they are not more conscious than the blind person is. The second problem that they see with the level-based analysis of global states is that there is good reason to doubt whether all global states can be assigned a determinate ordering relative to each other. The authors provide the example of the relationship between the global conscious state associated with rapid eye movement (REM) sleep and that which is associated with light levels of sedation. They do not believe that one of these states must be absolutely ‘higher’ than the other. Perhaps states can be compared with each other only relative to certain dimensions of analysis: the global state associated with REM sleep might be higher than that associated with sedation on some dimensions of analysis, whereas the opposite might be the case on other dimensions of analysis (Figure 1A).


The authors recognize two clear dimensions, but suggest there are likely several more. The first is gating. In some global states the contents of consciousness appear to be gated in various ways, with the result that individuals are able to experience only a restricted range of contents. MCS patients, patients undergoing absence seizures, and mildly sedated individuals can consciously represent the low-level features of objects, but they are typically unable to represent the categories to which perceptual objects belong. Thus, the gating of conscious contents is likely to provide one dimension along which certain global states can be hierarchically organized. The second dimension of consciousness is often captured by saying that the contents of consciousness are globally available for the control of thought and action. However, there is good reason to think that it is compromised in a number of pathologies of consciousness. For example, patients undergoing absence seizures can engage in perceptual-driven motor responses even though their capacities for reasoning, executive processing, and memory consolidation are typically limited.  With respect to this dimension, the global state of consciousness associated with the EMCS is ‘higher’ than that which is associated with the MCS, for EMCS patients have access to a wider range of cognitive and behavioral consuming systems than MCS patients do.

Beyond the dimensions of gating of contents and the availability associated with consciousness, the authors  suggest there might there be a role for attention in structuring global states. There is also the question of the possibility of interaction between some of the dimensions that structure consciousness. Although some dimensions may be completely independent of each other, others are likely to modulate each other. For example, there might be interactions between the gating of contents and functionality such that consciousness cannot be high on the gating dimension but low on certain dimensions of functionality (Figure 1C).

This idea that global states of consciousness are best understood as regions in a multidimensional space seems to me a natural progression as we learn more about consciousness and its underpinnings. An example is the time when you are completely immersed in some task and you don’t notice time passing or who walked by. Your attention is completely focused and gated so that you are missing other things. It is not a higher level of consciousness, but a different level of consciousness.  The spotlight is focused on a smaller area. The light itself is not any brighter. At the same time, the argument that Bayne, Hohwy and Owen are making seems to be focused at very limited consciousness. Most of us just see a sleeping person as unconscious without an active global neuronal workspace. We do not see a person as conscious until some threshold or phase change occurs so that the light is brighter so that the availability is greater.  There must be some level of error coming back from our predictions. Several previous posts including Consciousness. Confessions of a Romantic Reductionist, The Global Neuronal Workspace, and Dehaene: Consciousness and Decision Making,  have looked at consciousness. This paper did not address the consciousness of other animals. It also did not address Intuition which is often considered unconscious in some ways since it is typically effortless as we perceive it. Global availability seems important to the idea. Of course, as you develop expertise, global availability is not so necessary for certain subjects. Auto-pilot can handle normal situations once you have expertise so maybe we all have different conscious realms since we have different expertise.

Frankly, I doubt that many would argue that consciousness has only a single dimension. Dehaene may ignore multiple dimensions, but I would suggest that he does this to make the idea more understandable to laymen.




Hogarth on Description



problemUntitledThis post is based on “Providing information for decision making: Contrasting description and simulation,” Journal of Applied Research in Memory and Cognition 4 (2015) 221–228, written by
Robin M. Hogarth and Emre Soyer. Hogarth and Soyer propose that providing information to help people make decisions can be likened to telling stories. First, the provider – or story teller – needs to know what he or she wants to say. Second, it is important to understand characteristics of the audience as this affects how information is interpreted. And third, the provider must match what is said to the needs of the audience. Finally, when it comes to decision making, the provider should not tell the audience what to do. Although Hogarth and Soyer do not mention it, good storytelling draws us into the descriptions so that we can “experience” the story. (see post 2009 Review of Judgment and Decision Making Research)

Hogarth and Soyer state that their interest in this issue was stimulated by a survey they conducted of how economists interpret the results of regression analysis. The economists were given the outcomes of the regression analysis in a typical, tabular format and the questions involved interpreting the probabilistic implications of specific actions given the estimation results. The participants had available all the information necessary to provide correct answers, but in general they failed to do so. They tended to ignore the uncertainty involved in predicting the dependent variable conditional on values of the independent variable. As such they vastly overestimated the predictive ability of the model. Another group of similar economists who only saw a bivariate scatterplot of the data were accurate in answering the same questions. These economists were not generally blinded by numbers as some in the population, but they still needed the visually presented frequency information.

Continue reading

The Mixed Instrumental Controller

mic_MG_5849This is more or less a continuation of the previous post based on Andy Clark’s “Embodied Prediction,” in T. Metzinger & J. M. Windt (Eds). Open MIND: 7(T). Frankfurt am Main: MIND Group (2015).   It further weighs in on the issue of changing strategies or changing weights (see post Revisiting Swiss Army Knife or Adaptive Tool Box). Clark has brought to my attention the terms model free and model based which seem to roughly equate to intuition/system 1 and analysis/system 2 respectively. With this translation, I am helped in trying to tie this into ideas like cognitive niches and parallel constraint satisfaction. Clark in a footnote:

Current thinking about switching between model-free and model based strategies places them squarely in the context of hierarchical inference, through the use of “Bayesian parameter averaging”. This essentially associates model-free schemes with simpler (less complex) lower levels of the hierarchy that may, at times, need to be contextualized
by (more complex) higher levels.

As humans, we have been able to use language, our social skills, and our understanding of hierarchy to extend our cognition.  Multiplication of large numbers is an example. We cannot remember enough numbers in our heads so we created a way to do any multiplication on paper or its equivalent if we can learn our multiplication tables. Clark cites the example of the way that learning to perform mental arithmetic has been scaffolded, in some cultures, by the deliberate use of an abacus. Experience with patterns thus made available helps to install appreciation of many complex arithmetical operations and relations. We structure (and repeatedly re-structure) our physical and social environments in ways that make available new knowledge and skills. Prediction-hungry brains, exposed in the course of embodied action to novel patterns of sensory stimulation, may thus acquire forms of knowledge that were genuinely out-of reach prior to such physical-manipulation-based re-tuning of the generative model. Action and perception thus work together to reduce prediction error against the more slowly evolving backdrop of a culturally distributed process that spawns a succession of designed environments whose impact on the development and unfolding of human thought and reason can hardly be overestimated. Continue reading

Embodied(Grounded) prediction(cognition)


clark514DJ8Bec6L._SX329_BO1,204,203,200_This post is based on a paper by Andy Clark: “Embodied Prediction,” in T. Metzinger & J. M. Windt (Eds). Open MIND: 7(T). Frankfurt am Main: MIND Group (2015). Andy Clark is a philosopher at the University of Edinburgh whose tastes trend toward the wild shirt. He is a very well educated philosopher in the brain sciences and a good teacher. The paper seems to put forward some major ideas for decision making even though that is not its focus. Hammond’s idea of the Cognitive Continuum is well accommodated. It also seems quite compatible with Parallel Constraint Satisfaction, but leaves room for Fast and Frugal Heuristics. It seems to provide a way to merge Parallel Constraint Satisfaction and Cognitive Niches. I do not really understand PCS well enough, but it seems potentially to add hierarchy to PCS and make it into a generative model that can introduce fresh constraint satisfaction variables and constraints as new components. If you have not read the post Prediction Machine, you should because the current post skips much background. It is also difficult to distinguish Embodied Prediction and Grounded Cognition. There are likely to be posts that follow on the same general topic.

Continue reading

Perceptual presence

affiche - pleine pageThis post joins several others in being only tangentially related to JDM. It is based on the paper: “The felt presence of other minds: predictive processing, counterfactual predictions, and mentalizing in autism,” that appears in 2015 Consciousness and Cognition. The authors are Colin J. Palmer, Anil K. Seth and Jakob Hohwy. (Post Prediction error minimization)

A central ingredient of social experience is that we represent the mental states of other people. This sense of others’ mental states is a part of our understanding and anticipation of their behavior, and molds our own behavior correspondingly. If our friend shows up to the restaurant with a grim face, we have a sense of her mood and adjust our greeting accordingly. If she glances at our empty glass while pouring herself some wine, we have a sense of her intentions and might move our glass closer. This is the concept of mentalizing.

Continue reading

Dehaene: Consciousness and Decision Making

consciousimagesI love Stanislas Dehaene’s experiments, his general ideas and his book:  Consciousness and the Brain:  Deciphering How the Brain Codes our Thoughts, Viking, New York 2014 is a great synthesis and with respect to the title, it is a fine book. However, with respect to how it deals with decision making, I am mostly disappointed.

Consciousness: Informer or Informer/Decider? Although Dehaene’s Global Neuronal Workspace Theory describes what we feel as consciousness as the global sharing of information, in the book he seems to promote the idea of consciousness as the decider as well as the informer. Dehaene writes:

“My picture of consciousness imples a natural division of labor. In the basement, an army of unconscious workers does the exhausting work, sifting through piles of data. Meanwhile, at the top, a select board of executives, examining only a brief of the situation, slowly makes conscious decisions…No one can act on mere probabilities–at some point, a dictatorial process is needed to collapse all uncertainties and decide….Consciousness may be the brain’s scale tipping device—collapsing all unconscious probabilities into a single conscious sample so that we can move on to further decisions.” p89

I like the informer part, but I like the parallel constraint satisfaction (post Parallel Constraint Satisfaction Theory) idea that consciousness is asked to get more information (information search and production) which the unconscious system turns into a decision. In my scenario the visual system seems to have priority to get to the conscious level, then other sensory systems, and then the other unconscious systems push the most difficult or interesting decisions they have at any particular time through to the conscious system. Maybe there is some sort of priority ranking. Clearly, most rather mundane decisions seem to break through to consciousness only occasionally. As a part of breaking through to consciousness, more of the modular systems are alerted to the issue and maybe information can come from inside or maybe we seek information from others or examine the environment. We get the new information and the wheels of the parallel constraint system start whirring again to see if the decision can be made. Now, I do see a cognitive continuum so that yes certain decisions may stay with the board of executives. Dehaene uses the example of multidigit arithmetic. For most of us, it seems to consist of a series of introspective steps that we can accurately report. For instance, to multiply 30 by 47, I might multiply 30 by 40 and get 1200 and then add it to 7 by 30 to get 1410. But for a numerical savants that could be done in the unconscious. Nevertheless, there are certain things where consciousness does seem to be where the decisions are made. Complex multi-step questions where the emotions are more or less uninvolved might be examples.

Maybe the interesting part is the sort of phase change between the unconscious and the conscious. There is a lot happening there. Dehaene says that consciousness is doing the collapsing, but it seems to me it is already done once it reaches consciousness. Maybe that is not an important argument.  One theory is that conscious perception occurs when the stimulus allows the accumulation of sufficient sensory evidence to reach a threshold, at which point the brain ‘decides’ whether it has seen anything, and what it is. The mechanisms of conscious access would then be comparable to those of other decisions, involving an accumulation toward a threshold — with the difference that conscious perception would correspond to a global high-level ‘decision to engage’ many of the brain’s internal resources. Dehaene mentions this in a paper that was discussed in the post A Theory of Consciousness.

Consciousness Gives Us the Power of a Sophisticated Serial Computer. Dehaene is a believer in the Bayesian unconscious. “A strict logic governs the brain’s unconscious circuits–they appear ideally organized to perform statistically accurate inferences concerning our sensory inputs.” Both the unconscious and conscious systems seem to work in a linear fashion (Brunswik’s Lens Model), but the conscious system can redirect.

Dehaene states:

“This seems to be a major function of consciousness:  to collect the information from various processors, synthesize it, and then broadcast the result–a conscious symbol–to other, arbitrarily selected processors. These processors, in turn, apply their unconscious skills to this symbol, and the entire cycle may repeat a number  of times.  The outcome is a hybrid serial-parallel machine, in which stages of massively parallel computation are interleaved with a serial stage of conscious decision making and information routing.” p100

Dehaene and his colleagues have studied schizophrenics. They found a basic deficit of consciousness perception in schizophrenia. Words had to be presented for a longer time before schizophrenics reported conscious seeing. “Schizophrenics’ main problem seems to lie in the global integration of incoming information into a coherent whole.” Dehaene suggests that schizophrenics have a “global loss of top-down connectivity. This loss impairs capacity for conscious monitoring, top-down attention, working memory, and decision making. Apparently in schizophrenics, the prediction machine is not making enough predictions. With reduced top down messages, sensory inputs are never explained and error messages remain triggering multiple explanations. Schizophrenics thus see the need for complicated explanations that can lead to the far fetched interpretations of their surroundings that may express themselves as bizarre hallucinations and delusions.

Dehaene suggests that consciousness allows us to share information with others and that leads to better decisions. Dehaene’s most interesting idea is that our social abilities allow us to make decisions together and that these are better decisions. Although one can argue that language is imperfect and that much of it is used to transmit trivia and gossip, Dehaene provides evidence that our conversations are more than tabloids. This is a point that needed to be made to me. I was tending to believe that there was almost a direct tradeoff between cognitive skills and social skills and even though that tradeoff was adaptive, maybe it was close. Dehaene puts forth the argument that two heads are better than one and that consciousness makes this possible (This is also directly in line with Scott Page’s: The Difference — How the Power of Diversity Creates Better Groups, post Diversity or Systematic Error).

He cites the experiments of Iranian psychologist Bahador Bahrami. Bahrami had pairs of subjects examine two displays and were asked to decide on each trial whether the first or second contained a near threshold target image. The subjects initially made the decision independently and if they differed were asked to resolve the conflict through a brief discussion. As long as the abilities of the individuals were similar, pairing them yielded a significant improvement in accuracy. Nuances were not was shared to gain this, but simply a categorical answer (first or second display) and a judgment of confidence.

Dehaene suggests that Bayesian decision theory tells us that the very same decision rules should apply to our own thoughts and to those that we receive from others. In both cases, optimal decision making demands that each source of information, whether internal or external, should be weighted as accurately as possible, by an estimate of its reliability, before all the information is brought together into a single decision space. This sounds much like cue validities in Brunswik’s lens model or Parallel Constraint Satisfaction theory. According to Dehaene, once this workspace was opened to social inputs from other minds, we were able reap the benefits of a collective decision making algorithm: by comparing our knowledge with that of others, we achieve better decisions.








Screen-Shot-2015-01-23-at-2.30.26-PMThis post is based on the paper: “The discovery and comparison of symbolic magnitudes,” written by Cognitive Psychology 71 (2014) 27–54 This is a little different from one of Brunswik’s ideas –how good we are at determining sizes in the environment. Those might be called perceptual magnitudes. Symbolic magnitudes seem to be ones taken from memory and the immediate context.

We have sophisticated abilities to learn and make judgments based on relative magnitude. Magnitude comparisons are critical in making choices (e.g., which of two products is more desirable?), making social evaluations (e.g., which person is friendlier?), and in many other forms of appraisal (e.g., who can run faster, this bear or me?). In the paper, the authors seek to explain where subjective magnitudes come from?

For a few types of symbolic comparisons, such as numerical magnitudes of digits, it may indeed be the case that each object has a pre-stored magnitude in long-term memory.  The notion that magnitudes are pre-stored is implausible for the wide range of dimensions on which people can make symbolic comparisons, especially in the interpersonal and social realm (e.g., intelligence, friendliness, religiosity, conservatism). Magnitudes are more likely derived, context-dependent features that are computed as needed in response to a query.

Continue reading