Monthly Archives: February 2016

Hogarth on Simulation

scm1This post is a contination of the previous blog post Hogarth on Description. Hogarth and Soyer suggest that the information humans use for probabilistic decision making has two distinct sources: description of the particulars of the situations involved and through experience of past instances. Most decision aiding has focused on exploring effects of different problem descriptions and, as has been shown, is important because human judgments and decisions are so sensitive to different aspects of descriptions. However, this very sensitivity is problematic in that different types of judgments and decisions seem to need different solutions. To find methods with more general application, Hogarth and Soyer suggest exploiting the well-recognized human ability to encode frequency information, by building a simulation model that can be used to generate “outcomes” through a process that they call “simulated experience”.

Simulated experience essentially allows a decision maker to live actively through a decision situation as opposed to being presented with a passive description. The authors note that the difference between resolving problems that have been described as opposed to experienced is related to Brunswik’s distinction between the use of cognition and perception. In the former, people can be quite accurate in their responses but they can also make large errors. I note that this is similar to Hammond’s correspondence and coherence. With perception and correspondence, they are unlikely to be highly accurate but errors are likely to be small. Simulation, perception, and correspondence tend to be robust.

Continue reading

Hogarth on Description



problemUntitledThis post is based on “Providing information for decision making: Contrasting description and simulation,” Journal of Applied Research in Memory and Cognition 4 (2015) 221–228, written by
Robin M. Hogarth and Emre Soyer. Hogarth and Soyer propose that providing information to help people make decisions can be likened to telling stories. First, the provider – or story teller – needs to know what he or she wants to say. Second, it is important to understand characteristics of the audience as this affects how information is interpreted. And third, the provider must match what is said to the needs of the audience. Finally, when it comes to decision making, the provider should not tell the audience what to do. Although Hogarth and Soyer do not mention it, good storytelling draws us into the descriptions so that we can “experience” the story. (see post 2009 Review of Judgment and Decision Making Research)

Hogarth and Soyer state that their interest in this issue was stimulated by a survey they conducted of how economists interpret the results of regression analysis. The economists were given the outcomes of the regression analysis in a typical, tabular format and the questions involved interpreting the probabilistic implications of specific actions given the estimation results. The participants had available all the information necessary to provide correct answers, but in general they failed to do so. They tended to ignore the uncertainty involved in predicting the dependent variable conditional on values of the independent variable. As such they vastly overestimated the predictive ability of the model. Another group of similar economists who only saw a bivariate scatterplot of the data were accurate in answering the same questions. These economists were not generally blinded by numbers as some in the population, but they still needed the visually presented frequency information.

Continue reading

Single Strategy Framework and the Process of Changing Weights


cloudindexThis post starts from the conclusion of the previous post that the evidence supports a single strategy framework, looks at Julian Marewski’s criticism, and then piles on with ideas on how weights can be changed in a single strategy framework.

Marewski provided a paper for the special issue of the Journal of Applied Research in Memory and Cognition (2015)  on “Modeling and Aiding Intuition in Organizational Decision Making”:  “Unveiling the Lady in Black: Modeling and Aiding Intuition,” authored by Ulrich Hoffrage and Julian N. Marewski. The paper gives the parallel constraint satisfaction model a not so subtle knock:

By exaggerating and simplifying features or traits, caricatures can aid perceiving the real thing. In reality, both magic costumes and chastity belts are degrees on a continuum. In fact, many theories are neither solely formal or verbal. Glöckner and Betsch’s connectionist model of intuitive decision making, for instance, explicitly rests on both math and verbal assumptions. Indeed, on its own, theorizing at formal or informal levels is neither “good” nor “bad”. Clearly, both levels of description have their own merits and, actually, also their own problems. Both can be interesting, informative, and insightful – like the work presented in the first three papers of this special issue, which we hope you enjoy as much as we do. And both can border re-description and tautology. This can happen when a theory does not attempt to model processes. Examples are mathematical equations with free parameters that carry no explanatory value, but that are given quasi-psychological, marketable labels (e.g., “risk aversion”).

Continue reading

Strategy Selection — Single or Multiple?

spannerindexThis post tries to do a little tying together on a familiar subject. I look at a couple of papers that provide more perspective than typical research papers provide. First is the preliminary dissertation of Anke Söllner. She provides some educated synthesis which my posts need, but rarely get. Two of her papers which are also part of her dissertation are discussed in the posts Automatic Decision Making and Tool Box or Swiss Army Knife? I also look at a planned special issue of the Journal of Behavioral Decision Making to address “Strategy Selection: A Theoretical and Methodological Challenge.”

Söllner’s work is concerned with the question:  which framework–multiple strategy or single strategy– describes multi-attribute decision making best? In multi-attribute decision making we have to choose among two or more options. Cues can be consulted and each cue has some validity in reference to the decision criterion. If the criterion is an objective one (e.g., the quantity of oil), the task is referred to as probabilistic inference, whereas a subjective criterion (e.g., preference for a day trip) characterizes a preferential choice task. The multiple strategy framework is most notably the adaptive toolbox that includes fast and frugal heuristics as individual strategies. Single strategy frameworks assume that instead of selecting one from several distinct decision strategies, decision makers employ the same uniform decision making mechanism in every situation. The single strategy frameworks include the evidence accumulation model and the connectionist parallel constraint satisfaction model.

Continue reading