Monthly Archives: February 2017

Cognitive Penetration

This post is based on the paper: “Priors in perception: Top-down modulation, Bayesian
perceptual learning rate, and prediction error
minimization,” authored by Jakob Hohwy (see post Explaining Away) that appeared (or is scheduled to appear) in Consciousness and Cognition, 2017. Hohwy writes in an understandable manner and is so open that he posts papers even before they are complete of which this is an example. Hohwy pursues the idea of cognitive penetration – the notion that beliefs can determine perception.

Can ‘high level’ or ‘cognitive’ beliefs  modulate perception? Hohwy methodically examines this question by trying to create the conditions under which it might work and not be trivial. For under standard Bayesian inference,  the learning rate declines gradually as evidence is accumulated, and the prior updated to be ever more accurate. The more you already know the less you will learn from the world.  In a changing world this is not optimal since when things in the environment change we should vary the learning rate. Hohwy provides this example. As the ambient light conditions improve, the learning rate for detecting a visible target should increase (since the samples and therefore the prediction error has better precision in better light). This means Bayesian perceptual inference needs  a tool for regulating the learning rate. The inferential system should build expectations for the variability in lighting conditions throughout the day, so that the learning rate in visual detection tasks can be regulated up and down accordingly.

The human brain is thus hypothesized to build up a vast hierarchy of expectations that overall help regulate the learning rate and thereby optimize perceptual inference for a world that delivers changeable sensory input. Hohwy suggests that this makes the brain a hierarchical filter that takes the non-linear time series of sensory input and seeks to filter out regularities at different time scales. Considering the distributions in question to be normal or Gaussian, the brain is considered a hierarchical Gaussian filter or HGF .

Continue reading

Fuzzy-Trace Theory Explains Time Pressure Results

This post is based on a paper:  “Intuition and analytic processes in probabilistic reasoning: The role of time pressure,” authored by Sarah Furlan, Franca Agnoli, and Valerie F. Reyna. Valerie Reyna is, of course, the primary creator of fuzzy-trace theory. Reyna’s papers tend to do a good job of summing up the state of the decision making art and fitting in her ideas.

The authors note that although there are many points of disagreement, theorists generally agree that there are heuristic processes (Type 1) that are fast, automatic, unconscious, and require low effort. Many adult judgment biases are considered a consequence of these fast heuristic responses, also called default responses, because they are the first responses that come to mind. Type 1 processes are a central feature of intuitive thinking, requiring little cognitive effort or control. In contrast, analytic (Type 2) processes are considered slow, conscious, deliberate, and effortful, and they place demands on central working memory resources. Furlan, Agnoli, and Reyna assert that Type 2 processes are thought to be related to individual differences in cognitive capacity and Type 1 processes are thought to be independent of cognitive ability, a position challenged by the research presented in their paper. I was surprised by the given that intuitive abilities were unrelated to overall intelligence and cognitive abilities as set up by typical dual process theories.

Continue reading