Category Archives: numeracy

People Say/ Everyone Knows/ They Say

This post is sooo… derivative, but I cannot help myself. Good judgment is dependent on good information. It has never been so obvious how much we rely on good referees to determine what is good information. Most persuasion is based on filtering the information to the persuader’s advantage, but it has been rare in my lifetime to use the strategy of just hammering the lie.

It is easy to imagine that our paleo brains were rewarded by believing the chief. We both had skin in the game. So our still tribal brains believe things that are repeated over and over, even lies. Unfortunately, our information sources have gotten further and further from us so that our futures are not intertwined, except in an existential way. Our information networks have expanded and more critically selectively expanded.

Continue reading

The Myth of Experience

Emre Soyer and Robin Hogarth have written a new book, The Myth of Experience.  Why We Learn the Wrong Lessons, and Ways to Correct Them. This book is aimed at a general audience although it has copious and detailed notes and an index that will allow for deeper looks. I have much respect for their past work both individually and together.

The key idea that they have developed elsewhere is that some learning environments are kind so that what you learn by experience is helpful–say riding a bike– while other environments are wicked and experience cannot be relied upon to make good decisions. Robin Hogarth’s Educating Intuition develops this (See posts: What has Brunswik’s Lens Model Taught? ‘  , Kind and Wicked Learning Environments)

Continue reading

Coronavirus Math

Early 2020 is a truly Interesting time for decision making. We have learned what an inexact science risk communication is and had Robin Hogarth’s statement reemphasized:

“Human achievement is lower when there are nonlinearities in the ecology.” (What has Brunswik’s Lens Model Taught?).

Continue reading

Confidence, Part II

Now the confidence heuristic is not the only thing Trump takes advantage of, but we will leave those for another time. I will also avoid the question of whether or not Trump is actually confident. So what is the relationship of confidence and decision making? Daniel Kahneman in Thinking, Fast and Slow on page 13  describes:

a puzzling limitation of our mind:  our excessive confidence in what we believe we know, and our apparent inability to acknowledge the full extent of our ignorance and the uncertainty of the world we live in. We are prone to overestimate how much we understand about the world and to underestimate the role of chance in events. Overconfidence is fed by the illusory certainty of hindsight.

Continue reading

Consistency and Discrimination as Measures of Good Judgment

This post is based on a paper that appeared in Judgment and Decision Making, Vol. 12, No. 4, July 2017, pp. 369–381, “How generalizable is good judgment? A multi-task, multi-benchmark study,” authored by Barbara A. Mellers, Joshua D. Baker, Eva Chen, David R. Mandel, and Philip E. Tetlock.  Tetlock is a legend in decision making, and it is likely that he is an author because it is based on some of his past work and not because he was actively involved. Nevertheless, this paper, at least, provides an opportunity to go over some of the ideas in Superforecasting and expand upon them. Whoops! I was looking for an image to put on this post and found the one above. Mellers and Tetlock looked married and they are.  I imagine that she deserved more credit in Superforecasting, the Art and Science of Prediction. Even columnist David Brooks who I have derided in the past beat me to that fact. (http://www.nytimes.com/2013/03/22/opinion/brooks-forecasting-fox.html)

The authors note that Kenneth Hammond’s correspondence and coherence (Beyond Rationality) are the gold standards upon which to evaluate judgment. Correspondence is being empirically correct while coherence is being logically correct. Human judgment tends to fall short on both, but it has gotten us this far. Hammond always decried that psychological experiments were often poorly designed as measures, but complimented Tetlock  on his use of correspondence to judge political forecasting expertise. Experts were found wanting although they were better when the forecasting environment provided regular, clear feedback and there were repeated opportunities to learn. According to the authors, Weiss & Shanteau suggested that, at a minimum, good judges (i.e., domain experts) should demonstrate consistency and
discrimination in their judgments. In other words, experts should make similar judgments if cases are alike, and dissimilar judgments when cases are unalike.  Mellers et al suggest that consistency and discrimination are silver standards that could be useful. (As an aside, I would suggest that Ken Hammond would likely have had little use for these. Coherence is logical consistency and correspondence is empirical discrimination.)

Continue reading

Curiosity

 

Although I have had much respect for Dan Kahan’s work, I have had a little trouble with the Identity protective Cognition Thesis (ICT). The portion in bold in the quote below from “Motivated Numeracy and Enlightened Self-Government” has never rung true.

On matters like climate change, nuclear waste disposal, the financing of economic stimulus programs, and the like, an ordinary citizen pays no price for forming a perception of fact that is contrary to the best available empirical evidence: That individual’s personal beliefs and related actions—as consumer, voter, or public discussant—are too inconsequential to affect the level of risk he or anyone else faces or the outcome of any public policy debate. However, if he gets the ‘wrong answer” in relation to the one that is expected of members of his affinity group, the impact could be devastating: the loss of trust among peers, stigmatization within his community, and even the loss of economic opportunities.

Why should Thanksgiving be so painful if it were true? I do not even know what my friends think of these things. Now at some point issues like climate change become so politically tainted that you may avoid talking about them to not antagonize your friends, but that does not change my view. But now Kahan has a better explanation.

Continue reading

Fuzzy-Trace Theory Explains Time Pressure Results

This post is based on a paper:  “Intuition and analytic processes in probabilistic reasoning: The role of time pressure,” authored by Sarah Furlan, Franca Agnoli, and Valerie F. Reyna. Valerie Reyna is, of course, the primary creator of fuzzy-trace theory. Reyna’s papers tend to do a good job of summing up the state of the decision making art and fitting in her ideas.

The authors note that although there are many points of disagreement, theorists generally agree that there are heuristic processes (Type 1) that are fast, automatic, unconscious, and require low effort. Many adult judgment biases are considered a consequence of these fast heuristic responses, also called default responses, because they are the first responses that come to mind. Type 1 processes are a central feature of intuitive thinking, requiring little cognitive effort or control. In contrast, analytic (Type 2) processes are considered slow, conscious, deliberate, and effortful, and they place demands on central working memory resources. Furlan, Agnoli, and Reyna assert that Type 2 processes are thought to be related to individual differences in cognitive capacity and Type 1 processes are thought to be independent of cognitive ability, a position challenged by the research presented in their paper. I was surprised by the given that intuitive abilities were unrelated to overall intelligence and cognitive abilities as set up by typical dual process theories.

Continue reading

Hogarth on Simulation

scm1This post is a contination of the previous blog post Hogarth on Description. Hogarth and Soyer suggest that the information humans use for probabilistic decision making has two distinct sources: description of the particulars of the situations involved and through experience of past instances. Most decision aiding has focused on exploring effects of different problem descriptions and, as has been shown, is important because human judgments and decisions are so sensitive to different aspects of descriptions. However, this very sensitivity is problematic in that different types of judgments and decisions seem to need different solutions. To find methods with more general application, Hogarth and Soyer suggest exploiting the well-recognized human ability to encode frequency information, by building a simulation model that can be used to generate “outcomes” through a process that they call “simulated experience”.

Simulated experience essentially allows a decision maker to live actively through a decision situation as opposed to being presented with a passive description. The authors note that the difference between resolving problems that have been described as opposed to experienced is related to Brunswik’s distinction between the use of cognition and perception. In the former, people can be quite accurate in their responses but they can also make large errors. I note that this is similar to Hammond’s correspondence and coherence. With perception and correspondence, they are unlikely to be highly accurate but errors are likely to be small. Simulation, perception, and correspondence tend to be robust.

Continue reading

Hogarth on Description

 

 

problemUntitledThis post is based on “Providing information for decision making: Contrasting description and simulation,” Journal of Applied Research in Memory and Cognition 4 (2015) 221–228, written by
Robin M. Hogarth and Emre Soyer. Hogarth and Soyer propose that providing information to help people make decisions can be likened to telling stories. First, the provider – or story teller – needs to know what he or she wants to say. Second, it is important to understand characteristics of the audience as this affects how information is interpreted. And third, the provider must match what is said to the needs of the audience. Finally, when it comes to decision making, the provider should not tell the audience what to do. Although Hogarth and Soyer do not mention it, good storytelling draws us into the descriptions so that we can “experience” the story. (see post 2009 Review of Judgment and Decision Making Research)

Hogarth and Soyer state that their interest in this issue was stimulated by a survey they conducted of how economists interpret the results of regression analysis. The economists were given the outcomes of the regression analysis in a typical, tabular format and the questions involved interpreting the probabilistic implications of specific actions given the estimation results. The participants had available all the information necessary to provide correct answers, but in general they failed to do so. They tended to ignore the uncertainty involved in predicting the dependent variable conditional on values of the independent variable. As such they vastly overestimated the predictive ability of the model. Another group of similar economists who only saw a bivariate scatterplot of the data were accurate in answering the same questions. These economists were not generally blinded by numbers as some in the population, but they still needed the visually presented frequency information.

Continue reading

Superforecasting

superforecastingimagesThis post is a look at the book by Philip E Tetlock and Dan Gardner, Superforecasting– the Art and Science of Prediction.  Phil Tetlock is also the author of Expert Political Judgment: How Good Is It? How Can We Know?   In Superforecasting Tetlock blends discussion of the largely popular literature on decision making and his long duration scientific work on the ability of experts and others to predict future events.

In Expert Political Judgment: How Good Is It? How Can We Know? Tetlock found that the average expert did little better than guessing.  He also found that some did better. In Superforecasting he discusses the study of those who did better and how they did it.

Continue reading